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Full-Wave High-Order FEM Model for Lossy
Anisotropic Waveguides
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Abstract—Anisotropic lossy waveguides are analyzed by ap-
plying the finite-element method with higher order interpolatory
vector elements. The problem is formulated in terms of the electric
field only. The transverse vector component of the electric field is
numerically represented by higher order curl-conforming interpo-
latory vector functions, whereas the longitudinal component of the
field is represented by higher order scalar basis functions. Due to
the better interpolatory capabilities of the expansion functions, the
metallic and material losses are modeled with a higher precision
with respect to that provided by the other available numerical
models. Furthermore, the use of higher order elements permits
the correct modeling of the discontinuity of the normal field
component at the interfaces between different materials.

Index Terms—Finite-element method, guided-mode analysis,
higher order basis functions.

I. INTRODUCTION

V ERY accurate and flexible computer-aided analysis and
design techniques are required to deal with the increasing

complexity of modern microwave and optical waveguide de-
vices. For example, monolithic integrated circuits and devices
often have lossy thick electrodes on substrates that exhibits di-
electric and/or magnetic anisotropies and losses. To optimize
performances, one must be able to correctly predict, during the
design phase, the dependence on the fabrication parameters of
the propagation characteristics and field distributions of these
waveguide devices.

Among the most suitable methods [the mode-matching
technique, method of lines, spectral-domain approach,
integral-equation method, finite-difference method, and fi-
nite-element method (FEM)] to keep into account conductor
and dielectric losses, anisotropies of both electric and magnetic
kind, the FEM is probably the most generally applicable and the
most versatile. For this reason, the literature devoted to FEM
for microwave and optical waveguides is very wide and dates
back to the early 1970s of the past century; in this connection,
an extensive list of references is available in [1].

Different FEM formulations to deal with waveguide prob-
lems have been proposed in the literature. A number of these
are reviewed and compared from several points of view in [2]
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by classifying the principal FEM formulations also according to
the number of field components used, i.e., two or three. The re-
duction from three field components to two always results in the
loss of either sparsity or symmetry in the matrix equation [2].
In order to deal with general lossy anisotropic media in terms of
sparse FEM matrices, it is necessary to keep three field compo-
nents; early examples of lossless waveguide problems numeri-
cally solved by applying a three field components formulation
are given in [3], [4].

A good review of several different ways to avoid spurious
solutions in the FEM analysis of waveguide problems is given
in [5], while presenting a two-component FEM approach
to study inhomogeneous lossy waveguides with dielectric
gyrotropic materials. The best remedy to avoid the spurious
FEM solutions due to improper modeling of the null space
of the curl operator (see [6]) is to usecurl-conformingvector
bases or tangential elements [3].

In order to improve the convergence of the numerical solu-
tion, high-order vector elements are often used. For example,
a dramatic improvement in the convergence of the numerical
results for optical waveguides has been observed in [7] just by
use of first-order vector elements. Although [7] associates some
degrees of freedom to values of the transverse field at element
corner nodes, it nevertheless develops a numerical expansion of
a three-component vector unknown, similar to the one presented
here and to the one used in [8] and [9] to deal with lossy waveg-
uides in terms of zeroth-order vector elements.

In general, high-order elements either belong to a hierarchical
family or they can get interpolatory forms. A family is hierar-
chical if all the basis functions of theth-order set are a subset
of the basis functions forming the set of order ; for this
reason, the hierarchical (vector) set of order cannot be
made interpolatory at the same time.

In general, when interpolatory vector elements are used, the
order of the basis functions is the same (is kept constant)
on the whole computational domain. High-orderinterpolatory
forms of curl-conforming vector bases have been systemati-
cally constructed for all the commonly used elements: triangular
and quadrilateral elements for the two-dimensional (2-D) cases,
tetrahedral, brick, pentahedral and pyramidal elements for the
three-dimensional (3-D) case [10]–[12].

Hierarchical elements are usually employed when one has the
need to iteratively increase, on a given mesh, the order of the
used basis functions in some part of the computational domain
[13]–[15]. In fact, large complex problems can be approached
by iterative FEM schemes where, at each iteration step, one
improves the solution only in those regions of the computa-
tional domain where the numerical error of the previous step was
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found higher than a threshold. These improvements are obtained
either by using a denser mesh, in the required regions, without
changing the order of the used elements (adaption) or by lo-
cally increasing the order of the elements without redefining the
mesh ( adaption). Indeed, to be effective,-adaptive schemes
require the use ofhierarchicalvector basis functions, whereas

-adaptive schemes can be implemented by using interpolatory
vector elements.

The interpolatory vector bases used in this paper were
generated by multiplying the zeroth-order basis functions times
a complete set ofinterpolatorypolynomials, with redundancy
elimination, as described in [10]. Conversely, hierarchical basis
functions can be obtained by multiplying the zeroth-order
vector functions times a hierarchical family of (scalar) polyno-
mials [14].

In this paper, we provide a general three-component FEM
formulation of the lossy anisotropic waveguide problem. The
ensuing FEM discretization is obtained by using interpolatory
functions of arbitrarily high order on triangular elements. The
superiority of the higher order model is assessed by studying
several examples. In particular, by considering an inhomoge-
neously filled waveguide, it is shown that the use of high-order
elements permits the correct modeling of the discontinuity of
the normal field component at the interfaces between different
materials. This method is then applied to study shielded waveg-
uiding structures such as striplines of the most general type: with
metallic regions of finite thickness and finite conductivity, and
with lossy anisotropic nonhomogeneous substrates. For thick
metal strips of finite conductivity, the current density distribu-
tion cannot be approximated by a surface current density. In this
case, the metallic regions of finite conductivity are discretized
and the field is computed therein. This allows for a very precise
evaluation of the lossy phenomena.

II. FORMULATION

The full-wave model of a uniform anisotropic waveguide
along the -axis is obtained from the frequency-domain
Helmholtz’s vector equation

(1)

by assuming and suppressing a longitudinal-dependence factor
for the total electric field , with

and . In (1),
is the free-space wavenumber and and

are the free-space permeability and permittivity, respectively;
whereas and are the relative permittivity and permeability
tensors, respectively.

In case of shielded waveguides, the boundaryof the
waveguide cross section is made of conducting mate-
rial; conversely, for unshielded waveguides,is a fictitious
geometrical boundary introduced to limit the domain of
the problem. By weighting (1) with a testing function

on the domain

, application of the divergence theorem yields the integral
residual

(2)

with

(3)

(4)

(5)

(6)

and where ) is the transverse component of,
whereas . Equation (2) considerably simplifies for
gyrotropic tensor with a principal axis along the waveguide
axis since the transverse vectorsand , defined in (5) and
(6), vanish in this case.

Evaluation of the -contour integral in (2) is not required to
deal with shielded waveguiding structures bounded by perfectly
conducting walls. In fact, the boundary condition on a perfect
magnetic wall implies , whereas on a
perfect electric wall, the vanishing of the tangent electric field is
readily imposed by appropriate choice of the functions used to
expand the vector field . In this paper, we deal with shielded
waveguides only.

By use of a Galerkin form of the finite-element method, (2) is
discretized by following a rather standard procedure similar to
that given in [3]. This yields a complex generalized eigenvalue
problem solved by use of an iterative method. The waveguide
modal field distributions are obtained as the eigenvectors of the
generalized problem.

In our numerical approach, the transverse vector component
of the electric field is modeled by high-order curl-con-
forming elements, whereas the longitudinal componentis
modeled by high-order nodal elements. Use of these elements
ensures the continuity of tangential field components at ele-
ment interfaces, eliminates spurious modes and facilitates the
enforcement of the boundary conditions. A triangular mesh is
used to discretize the waveguide cross section, and the higher
order interpolatory forms of the curl-conforming vector bases
we use are those given in [10].

It is of paramount importance that the scalar basis functions
used to model the longitudinal field and its gradient have
the same order of those used to representand its curl. Since
(2) requires the computation of , the interpolatory scalar
expansion functions must be linear at order and have to
ensure the continuity of the longitudinal field component at ele-
ment interfaces. Thus, three scalar functions are required for ze-
roth-order completeness on a triangle. For higher order scheme,
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Fig. 1. Scalar basis functions for complete first- and second-order
representation of the longitudinal componentE . (a), (b) Forp = 1. (c)–(f)
For p = 2.

Fig. 2. Dispersion diagram for a rectangular waveguide (a = 2b) containing
a thin dielectric slab (� = 10) of thicknesst = 0:2b .TE results are given
on the left-hand side, whileTM results are shown on the right-hand side.
Analytical results are reported by solid lines; the circles show the FEM results
obtained withp = 1.

the order of the scalar expansion functions must increase. That is
to say, if the transverse vector component of the electric field
is represented by curl-conforming functions of order[10], the
longitudinal expansion functions must form a complete poly-
nomial set of order on a triangle. In order to reachth
order completeness, the total number of nodal functions per tri-
angle is . High-order scalar (Lagrange) elements
are easily defined on a triangle [17]; the interpolation points of
these functions are arranged as in the Pascal triangle. Triangular
nodal functions for and are shown in Fig. 1. Three
corner [see Fig. 1(a)] plus three midside node functions [see
Fig. 1(b)] are required for . For , one has three corner
node functions [see Fig. 1(c)], six midside node functions [see
Fig. 1(d) and (f)], and one internal node function [see Fig. 1(e)].

III. SUPERIORITY OF THEHIGHER ORDERMODEL

As a critical test case, we first consider a rectangular wave-
guide of size along the -axis and along the -axis.
The waveguide is dielectric filled between and
with a material of relative permittivity . Fig. 2 reports
the dispersion curves of this waveguide obtained by applying the
transverse resonance technique [18]. Results for modes trans-
verse electric with respect to( modes) are reported on
the left-hand side, whereas results for modes transverse mag-
netic with respect to ( ) are given on the right-hand side.
The modal index refers to the component

Fig. 3. Relative error for the first 11 modes atk a = 7 andp = 1; 2; 3 for
the inhomogeneously filled rectangular waveguide of Fig. 2.

of the transverse wavenumber. The circles show the FEM re-
sults obtained with (280 elements, 163 corner nodes, and
1873 unknowns); these agree very well with the analytic results
up to . Results relative to higher order elements are
not reported; in fact, e.g., the results obtained by using a rather
coarse mesh (44 elements, 33 corner nodes) with (1065
unknowns), are undistinguishable from the analytic results.

The relative errors on for the first 11 modes at
are shown in Fig. 3 versus the number of unknowns (internal
degrees of freedom). Results for are not shown because
only ten modes are clearly distinguishable with at

in the range considered (number of unknowns). These results
show the faster convergence achievable by using higher order
elements.

Notice also that only higher order elements permit to cor-
rectly model the discontinuity of the normal field components
at interfaces between different materials. For example, Fig. 4
shows the ratio of the normal components of the elec-
tric field along the air/dielectric interface at for the
fundamental mode of the previous inhomogeneously filled rect-
angular waveguide evaluated with . These re-
sults were obtained by using approximately the same number
of unknowns ( 1800). The divergent behavior at the boundaries

and is due to the vanishing of the-component of
the electric field on the lateral metal boundaries. Note that these
results approach the correct value of at the in-
terface only for . Incorrect results are always obtained
with , even when a much larger number of unknowns is
used. This evidence is easily explained by noticing that the cor-
rect jump of the field component, normal to the triangle edges,
can be modeled only if a sufficient number of interior degrees
of freedom is available. For , each triangular curl-con-
forming element contributes with only two interior degrees of
freedom [10], whereas the element has three edges. For ,
there are six (transverse) interior degrees of freedom per triangle
and, hence, there is the possibility to model the normal field dis-
continuity (or continuity) at each element edge. Furthermore,
notice that the effect of the mesh discretization is quite evident
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Fig. 4. Normal electric field discontinuity at the interface dielectric–air for the
inhomogeneously filled rectangular waveguide. Number of edges located on the
interface: 28 forp = 0, 14 forp = 1, ten forp = 2, and eight forp = 3. Total
number of unknowns: 2153 forp = 0, 1873 forp = 1, 1897 forp = 2, and
1681 forp = 3.

for zeroth-, first-, and second-order elements, while it almost
disappears when third-order elements are used.

To clarify the modeling of the field continuity from element to
element, let us consider again a rectangular waveguide (
) half filled with a material of relative permittivity for

. Fig. 5 shows the-component of the electric field
for the fundamental mode along a vertical straight line drawn at

. The results for and were obtained with
5697, 4969, 2635 unknowns, respectively. The correct jump of
the vertical field component at is five. Numerically, we
have found 4.8 for , 4.83 for , and 4.87 for .

In the case of , for the -field component, a staircase
approximation is obtained, as expected, since zeroth-order func-
tions can correctly model only constant field within each ele-
ments. For , the approximation is piecewise linear, for

, second-order approximation is obtained, and so on.

The error in modeling the normal discontinuity (or conti-
nuity) of the field component at element edges is, in general,
of concern only for edges located on a boundary separating ma-
terials with different electromagnetic parameters. In fact, the di-
rection normal to a given separation boundary is also normal to
all the edges modeling this boundary. Conversely, an arbitrary
line drawn in a homogeneous region will cut element edges at
different angles, not always at 90. In this case, the continuity
of the field component tangent to the line will be satisfied ev-
erywhere at the proper order in the homogeneous region, with
the exception of those points of the given line belonging to more
than one element. At these points, the error will be greater if the
line happens to be orthogonal to an element edge.

To show that high-order elements can be effectively used
on coarse meshes, in Fig. 6 some results relative to an image
line, consisting of a rectangular waveguide ( mm,

mm) with a rutile anisotropic insert (permittivity ,
) of rectangular cross section ( mm

mm) are shown. The two meshes used to study this
structure are shown in the inset of Fig. 6. The coarse mesh has
24 triangles and 19 corner nodes and yields 37, 145, 325, 577,

Fig. 5. Normal electric field component along vertical line for an half-filled
rectangular waveguide (a=b = 2, � = 5). Total number of unknowns: 5697
for p = 0 (solid line), 4969 forp = 1 (dashed line), and 2635 forp = 2 (dotted
line).

Fig. 6. Dispersion diagram for the image line described in the text. Solid line:
results forp = 2 (325 unknowns), coarse mesh. Dash line: results forp = 0

(544 unknowns), dense mesh. Diamonds: results taken from [19].

and 901 unknowns at and , respectively. The
dense mesh has 291 triangles and 166 corner nodes and yields
544 unknowns at , which is a number of unknowns com-
parable to the number one has by using on the coarse
mesh. The results obtained with the dense mesh for (37
unknowns) are reported in Fig. 6 by dashed lines; solid-line re-
sults are relative to the coarse mesh with (325 unknowns).
Our results are compared with the mode expansion results of
[19] obtained by using 200 modes; in [19], the convergence of
the modal expansion results has been proven for the dominating
mode only. Notice that this test case is also considered in [16, p.
210]. The results relative to the third and fourth mode provided
by our dense mesh with are of poor quality; convergence
of our numerical results for on the coarse mesh has been
verified by comparison with the results obtained by using
and .
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Fig. 7. Attenuation constant for the microstrip line described in the text. The
solid line results are taken from [20].

IV. RESULTS FORLOSSYWAVEGUIDES

High-order elements can be effectively used to model the
complex behavior of electromagnetic fields in lossy metal
regions having dimension of the same order of the skin depths
of some frequency components. For example, let us consider a
lossy microstrip line on a (lossless) GaAs substrate of height

m and permittivity . The line parameters
are: linewidth m, strip and ground plane thickness

m, strip conductivity S/m, ground-plane
conductivity S/m. This structure has been studied
by enclosing it in a square perfectly conducting box of size
20 W. To numerically deal with such a structure, high-order
quadrilateral elements are more convenient than triangular ele-
ments because of the presence of very thin rectangular regions
(the strip and ground plane). Despite the fact that good models
could be obtained by use of specialized preprocessor codes,
to prove the effectiveness of high-order elements on a general
triangular mesh, the geometry has been readily discretized with
a triangular mesh by use of a commercially available code
(PDETOOL–MATLAB).

The mesh we used consists of 420 triangles and 733 corner
nodes, corresponding to14 000 unknowns for and to
roughly 960 000 unknowns for . In spite of these high
figures relevant to the number of degrees of freedom, this mesh
yields a questionable model for the electromagnetic field in the
lossy ground plane and within the strip. In particular, the strip is
coarsely modeled by only one layer of eight triangle doublets,
which is to say, by 16 right-angled triangles in all. Each triangle
within the strip is of poor quality since its orthogonal sides have
very unequal length (3 and9 m). Therefore, appropriate ex-
pansion functions able to accurately represent the field decay
in the metal region are necessary to a reliable evaluation of the
losses. It is rather evident that this is impossible just by using
zeroth-order functions and only one layer of triangle doublets
within the strip. In fact, the strip thicknessequals two skin
depths ( ) at GHz, whereas at 40 GHz, the strip
skin depth is roughly ( is 0.39 m). To get good results
with , one needs to define at least three layers of triangle

doublets in the ground plane and within the strip (with 132 tri-
angles in the strip region).

In Fig. 7, the attenuation constant evaluated for
and is compared with the result of [20], obtained by using 551
zeroth-order rectangular elements. The propagation constant re-
sults are not reported since they are always in excellent agree-
ment with those of [20], independently from the chosenvalue.
As a matter of fact, from Fig. 7, one can appreciate the conver-
gence of our results to the reference solution for increasing order

of the expansion functions.
The number of unknowns required to study this lossy mi-

crostip line can be reduced by using appropriate boundary con-
ditions on artificial boundaries defined to reduce and close the
mesh region. A more significant reduction in the number of un-
knowns is achievable by resorting to solution schemes that in-
volve high-order functions only in the regions where these are
needed ( adaption or, for example, as in [21]). These improve-
ments are not discussed here since they are outside the point of
this paper.

V. CONCLUSIONS

A higher order vector FEM code to study shielded waveg-
uides with lossy anisotropic regions and with metallic regions of
finite thickness and finite conductivity has been implemented.
We have shown that higher order vector elements are essential to
correctly model the normal discontinuity of the field at the inter-
face between two different media, and to accurately model the
conductor losses in roughly meshed metal regions of dimension
of the same order of the skin depths of some frequency compo-
nents.
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