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Full-Wave High-Order FEM Model for Lossy
Anisotropic Waveguides
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Abstract—Anisotropic lossy waveguides are analyzed by ap- by classifying the principal FEM formulations also according to
plying the finite-element method with higher order interpolatory  the number of field components used, i.e., two or three. The re-

vector elements. The problem is formulated in terms of the electric duction from three field components to two always results in the
field only. The transverse vector component of the electric field is

numerically represented by higher order curl-conforming interpo- loss of either SpgrSIty or symmetry n the matrlx e_ql_Jatlon [2].
latory vector functions, whereas the longitudinal component of the N order to deal with general lossy anisotropic media in terms of
field is represented by higher order scalar basis functions. Due to sparse FEM matrices, it is necessary to keep three field compo-
the better interpolatory capabilities of the expansion functions, the nents; early examples of lossless waveguide problems numeri-

metallic and material losses are modeled with a higher precision Iv lvin hree fiel mponents formulation
with respect to that provided by the other available numerical ;?eygi/ctjeneig % a[gaay g a three field components formulatio

models. Furthermore, the use of higher order elements permits X . . )
the correct modeling of the discontinuity of the normal field A good review of several different ways to avoid spurious

component at the interfaces between different materials. solutions in the FEM analysis of waveguide problems is given
Index Terms—Finite-element method, guided-mode analysis, N [3], Wh'le presenting a two-component FEM approach
higher order basis functions. to study inhomogeneous lossy waveguides with dielectric

gyrotropic materials. The best remedy to avoid the spurious
FEM solutions due to improper modeling of the null space
of the curl operator (see [6]) is to usarl-conformingvector
ERY accurate and flexible computer-aided analysis afhses or tangential elements [3].
design techniques are required to deal with the increasingin order to improve the convergence of the numerical solu-
complexity of modern microwave and optical waveguide déion, high-order vector elements are often used. For example,
vices. For example, monolithic integrated circuits and devicasdramatic improvement in the convergence of the numerical
often have lossy thick electrodes on substrates that exhibits misults for optical waveguides has been observed in [7] just by
electric and/or magnetic anisotropies and losses. To optimizse of first-order vector elements. Although [7] associates some
performances, one must be able to correctly predict, during ttiegrees of freedom to values of the transverse field at element
design phase, the dependence on the fabrication parametersoofier nodes, it nevertheless develops a numerical expansion of
the propagation characteristics and field distributions of theaghree-component vector unknown, similar to the one presented
waveguide devices. here and to the one used in [8] and [9] to deal with lossy waveg-
Among the most suitable methods [the mode-matchingdes in terms of zeroth-order vector elements.
technique, method of lines, spectral-domain approach,Iingeneral, high-order elements either belong to a hierarchical
integral-equation method, finite-difference method, and ffamily or they can get interpolatory forms. A family is hierar-
nite-element method (FEM)] to keep into account conductahical if all the basis functions of theh-order set are a subset
and dielectric losses, anisotropies of both electric and magnetfahe basis functions forming the set of order+ 1); for this
kind, the FEM is probably the most generally applicable and theason, the hierarchical (vector) set of or@er- 1) cannot be
most versatile. For this reason, the literature devoted to FEkBde interpolatory at the same time.
for microwave and optical waveguides is very wide and datesin general, when interpolatory vector elements are used, the
back to the early 1970s of the past century; in this connectiarderp of the basis functions is the sameié kept constant)
an extensive list of references is available in [1]. on the whole computational domain. High-ordeterpolatory
Different FEM formulations to deal with waveguide probforms of curl-conforming vector bases have been systemati-
lems have been proposed in the literature. A number of thesadly constructed for all the commonly used elements: triangular
are reviewed and compared from several points of view in [2hd quadrilateral elements for the two-dimensional (2-D) cases,
tetrahedral, brick, pentahedral and pyramidal elements for the
Manuscript received April 7, 2000; revised March 13, 2001. This wor]llﬂ'r‘f’e'dimenSionaI (3-D) case [10]-[12].
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found higher than a threshold. These improvements are obtairtedapplication of the divergence theorem yields the integral
either by using a denser mesh, in the required regions, witheasidual

changing the order of the used elemerit@aflaption) or by lo- -

cally increasing the order of the elements without redefining the / (Vi X T). ™ (V, x Ey).

mesh § adaption). Indeed, to be effectiveadaptive schemes s

require the use dfierarchical vector basis functions, whereas + (VL% + jk.TY) 4 (VL E. + jk.Ey)
h-adaptive schemes can be implemented by using interpolatory + (Vi T, + jk.Ty) -ve(Ve X Ey),
vector elements. + (Ve X T) %y - (ViE. + jkEy)

The interpolatory vector bases used in this paper were
generated by multiplying the zeroth-order basis functions times
a complete set ohterpolatory polynomials, with redundancy +/ [T N (u? .V x E)} dy=0 (2)
elimination, as described in [10]. Conversely, hierarchical basis ¥ =
functions can be obtained by multiplying the zeroth-order.

— kO(Tt (:t Et+T €z 4)] dS

vector functions times a hierarchical family of (scalar) polyno— with
mials [14]. v s -1 % 3
In this paper, we provide a general three-component FEM Pz =2l 2 )
formulation of the lossy anisotropic waveguide problem. The vi=—2X ;_ﬁl X Z (4)
ensuing FEM discretization is obtained by using interpolatory . T
Ut =2 X Py c 2 ()

functions of arbitrarily high order on triangular elements. The
superiority of the higher order model is assessed by studying Uy =—2- l_lr?l Xz (6)
several examples. In particular, by considering an inhomoge- B
neously filled waveguide, it is shown that the use of high-ordand where (= —¢, x 2 x 2) is the transverse componentof
elements permits the correct modeling of the discontinuity wfhereas.. = z-¢,.-2z. Equation (2) considerably simplifies for
the normal field component at the interfaces between differegytrotropic tensog, with a principal axis along the waveguide
materials. This method is then applied to study shielded wavegkis ~ since the transverse vectarsand,, defined in (5) and
uiding structures such as striplines of the most general type: w{#), vanish in this case.
metallic regions of finite thickness and finite conductivity, and Evaluation of they-contour integral in (2) is not required to
with lossy anisotropic nonhomogeneous substrates. For thitdal with shielded waveguiding structures bounded by perfectly
metal strips of finite conductivity, the current density distribueonducting walls. In fact, the boundary condition on a perfect
tion cannot be approximated by a surface current density. In thiggnetic wall impliegi x (u;* -V x E) = 0, whereas on a
case, the metallic regions of finite conductivity are discretizgskrfect electric wall, the vanlshlng of the tangent electric field is
and the field is computed therein. This allows for a very precigeadily imposed by appropriate choice of the functions used to
evaluation of the lossy phenomena. expand the vector field. In this paper, we deal with shielded
waveguides only.

By use of a Galerkin form of the finite-element method, (2) is
discretized by following a rather standard procedure similar to
that given in [3]. This yields a complex generalized eigenvalue

The full-wave model of a uniform anisotropic Wavegu,d@roblem solved by use of an iterative method. The waveguide
along the z-axis is obtained from the frequency- -domaifnodal field distributions are obtained as the eigenvectors of the

Helmholtz’s vector equation generalized problem.
In our numerical approach, the transverse vector component
of the electric fieldE, is modeled by high-order curl-con-
V x [;ﬁl -(V x E)} —kie,-E=0 (1) forming elements, whereas the longitudinal compongnts
- modeled by high-order nodal elements. Use of these elements
ensures the continuity of tangential field components at ele-
by assuming and suppressing a longitudinal-dependence fagteit interfaces, eliminates spurious modes and facilitates the
exp(—jk.z) for the total electric fieldt = (E, + E.2), with  enforcement of the boundary conditions. A triangular mesh is
V =V, —jk.zand(V, x E;). = z-(V, x Ey). In (1), used to discretize the waveguide cross secfipand the higher
ko = wy/eono is the free-space wavenumber angland <o order interpolatory forms of the curl-conforming vector bases
are the free-space permeability and permittivity, respectivelyie use are those given in [10].
whereag . andp . are the relative permittivity and permeability |t is of paramount importance that the scalar basis functions
tensors, respectively. used to model the longitudinal fiel#, and its gradient have
In case of shielded waveguides, the boundarnof the the same order of those used to repredgnand its curl. Since
waveguide cross sectioy is made of conducting mate-(2) requires the computation &f, E., the interpolatory scalar
rial; conversely, for unshielded waveguidesjs a fictitious expansion functions must be linear at orger 0 and have to
geometrical boundary introduced to limit the domain oénsure the continuity of the longitudinal field component at ele-
the problem. By weighting (1) with a testing functionmentinterfaces. Thus, three scalar functions are required for ze-
Texp(—jk.z) = (Ty + T.2)exp(—jk.z) on the domain roth-order completeness on a triangle. For higher order scheme,

Il. FORMULATION
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Fig. 3. Relative error for the first 11 modesfate« = 7 andp = 1, 2, 3 for
the inhomogeneously filled rectangular waveguide of Fig. 2.

of the transverse wavenumber. The circles show the FEM re-
sults obtained witly = 1 (280 elements, 163 corner nodes, and
1873 unknowns); these agree very well with the analytic results
up to k,a ~ 8. Results relative to higher order elements are
not reported; in fact, e.g., the results obtained by using a rather
coarse mesh (44 elements, 33 corner nodes) with3 (1065

Fig. 2. Dispersion diagram for a rectangular waveguide=(2b) containing UNknowns), are undistinguishable from the analytic results.

a thin dielectric slabg,. = 10) of thicknesg = 0.2b. TE ., results are given The relative errors o, for the first 11 modes atga = 7

on the left-hand side, whil&M,,,,, results are shown on the right-hand side. h . . - h b f unk . |
Analytical results are reported by solid lines; the circles show the FEM resufi§€® Shown in Fig. 3 versus the number of unknowns (interna
obtained withp = 1. degrees of freedom). Results for= 0 are not shown because
only ten modes are clearly distinguishable with- 0 atkga =

the order of the scalar expansion functions mustincrease. That |8 the range considered (number of unknowns). These results
to say, if the transverse vector component of the electric fisld Show the faster convergence achievable by using higher order
is represented by curl-conforming functions of orgét0], the ~€lements.

longitudinal expansion functions must form a complete poly- Notice also that only higher order elements permit to cor-
nomial set of ordep + 1 on a triangle. In order to reagith rectly model the discontinuity of the normal field components
order completeness, the total number of nodal functions per & interfaces between different materials. For example, Fig. 4
angle is(p+2)(p+3)/2. High-order scalar (Lagrange) elementshows the ratid,, /£, of the normal components of the elec-
are easily defined on a triangle [17]; the interpolation points &fc field along the air/dielectric interface gt= 0.2b for the
these functions are arranged as in the Pascal triangle. Triangii&damental mode of the previous inhomogeneously filled rect-
nodal functions fop = 1 andp = 2 are shown in Fig. 1. Three angular waveguide evaluated with= 0, 1, 2, 3. These re-
corner [see Fig. 1(a)] plus three midside node functions [sédlts were obtained by using approximately the same number
Fig. 1(b)] are required fgs = 1. Forp = 2, one has three cornerof unknowns (316_300). The diverggnt_behavior atthe boundaries
node functions [see Fig. 1(c)], six midside node functions [sée= 0 @ndz = a is due to the vanishing of thg.component of

Fig. 1(d) and (f)], and one internal node function [see Fig. 1(e)t 1e electric field on the lateral metal boundaries. Note the_lt these
results approach the correct valuekf, /E£,, = 10 at the in-

terface only forp > 2. Incorrect results are always obtained
with p = 0, even when a much larger number of unknowns is
As a critical test case, we first consider a rectangular wavigsed. This evidence is easily explained by noticing that the cor-
guide of sizen along ther-axis ands = a/2 along they-axis. rect jump of the field component, normal to the triangle edges,
The waveguide is dielectric filled betwegn= 0 andy = 0.2b  can be modeled only if a sufficient number of interior degrees
with a material of relative permittivity, = 10. Fig. 2 reports of freedom is available. Fosg = 1, each triangular curl-con-
the dispersion curves of this waveguide obtained by applying tfigming element contributes with only two interior degrees of
transverse resonance technique [18]. Results for modes trénsedom [10], whereas the element has three edges: Eo?,
verse electric with respect tp(TE,  modes) are reported onthere are six (transverse) interior degrees of freedom per triangle
the left-hand side, whereas results for modes transverse mawgd, hence, there is the possibility to model the normal field dis-
netic with respect tg (M, ) are given on the right-hand side.continuity (or continuity) at each element edge. Furthermore,
The modal indexn refers to ther componentt, = mn/a notice that the effect of the mesh discretization is quite evident

I1l. SUPERIORITY OF THEHIGHER ORDER MODEL
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Fig. 4. Normal electric field discontinuity at the interface dielectric—air for thg;jq 5 Normal electric field component along vertical line for an half-filled
inhomogeneously filled rectangular waveguide. Number of edges located O”tt@%tangular waveguider(b = 2, ¢, = 5). Total number of unknowns: 5697

interface: 28 fop = 0, 14 forp = 1, ten forp = 2, and eight fop = 3. Total - 5, —¢ (solid line), 4969 fop = 1 (dashed line), and 2635 fpr= 2 (dotted
number of unknowns: 2153 fgr = 0, 1873 forp = 1, 1897 forp = 2, and line).

1681 forp = 3.
) o 40
for zeroth-, first-, and second-order elements, while it almost
disappears when third-order elements are used. 38
To clarify the modeling of the field continuity from element to 36|
elemen.t, let us consider again a re_ctangulqr yv_avegmﬁe:é ol ;‘«‘X‘%ﬁ;ﬁrﬁ%ﬁ:‘ |
2) half filled with a material of relative permittivity,. = 5 for 3 AR
. - o SRR
0 < y < b/2. Fig. 5 shows thg-component of the electric field 32}, P -
for the fundamental mode along a vertical straight line drawn at & §§f§f@:‘#;§m:
x ~ a/2. The results fop = 0,1, and2 were obtained with §3° gﬁgg
5697, 4969, 2635 unknowns, respectively. The correct jump of T 2g ARNA
the vertical field component gt= b/2 is five. Numerically, we T

N
[e3]

have found 4.8 fop = 0, 4.83 forp = 1, and 4.87 fop = 2.

In the case op = 0, for they-field component, a staircase
approximation is obtained, as expected, since zeroth-order func- 5,
tions can correctly model only constant field within each ele-
ments. Forp = 1, the approximation is piecewise linear, for 205 P 4 6 8
p = 2, second-order approximation is obtained, and so on. K mm

The error in modeling the normal discontinuity (or conti-
nuity) of the field component at element edges is, in gener&lg. 6. Dispersion diagram for the image line described in the text. Solid line:
of concern only for edges located on a boundary separating g P =5 G2 iaonre) ace neeh, Besh e esloor ¢
terials with different electromagnetic parameters. In fact, the di-
rection normal to a given separation boundary is also normal to
all the edges modeling this boundary. Conversely, an arbitraagd 901 unknowns at = 0, 1,2, 3, and4, respectively. The
line drawn in a homogeneous region will cut element edgesadnse mesh has 291 triangles and 166 corner nodes and yields
different angles, not always at 90n this case, the continuity 544 unknowns ap = 0, which is a number of unknowns com-
of the field component tangent to the line will be satisfied eyarable to the number one has by using= 3 on the coarse
erywhere at the proper order in the homogeneous region, witfesh. The results obtained with the dense mesh fer0 (37
the exception of those points of the given line belonging to moumknowns) are reported in Fig. 6 by dashed lines; solid-line re-
than one element. At these points, the error will be greater if tbalts are relative to the coarse mesh wits 2 (325 unknowns).
line happens to be orthogonal to an element edge. Our results are compared with the mode expansion results of

To show that high-order elements can be effectively us¢tB] obtained by using 200 modes; in [19], the convergence of
on coarse meshes, in Fig. 6 some results relative to an imalye modal expansion results has been proven for the dominating
line, consisting of a rectangular waveguide=£ 1.3 mm,b = mode only. Notice that this test case is also considered in [16, p.
1.6 mm) with a rutile anisotropic insert (permittiviey,, = 170, 210]. The results relative to the third and fourth mode provided
ey = €, = 85) of rectangular cross section’(= 0.55 mm by our dense mesh with= 0 are of poor quality; convergence
¥ = 0.82 mm) are shown. The two meshes used to study thi§ our numerical results fgy = 2 on the coarse mesh has been
structure are shown in the inset of Fig. 6. The coarse mesh hasified by comparison with the results obtained by uging 3
24 triangles and 19 corner nodes and yields 37, 145, 325, 5@ndyp = 4.

N
=
-
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80 doublets in the ground plane and within the strip (with 132 tri-

angles in the strip region).

In Fig. 7, the attenuation constant evaluatedgce 0,1, 2,
and3 is compared with the result of [20], obtained by using 551
zeroth-order rectangular elements. The propagation constant re-
sults are not reported since they are always in excellent agree-
ment with those of [20], independently from the chogesalue.

As a matter of fact, from Fig. 7, one can appreciate the conver-
gence of our results to the reference solution for increasing order
p of the expansion functions.

The number of unknowns required to study this lossy mi-
crostip line can be reduced by using appropriate boundary con-
ditions on artificial boundaries defined to reduce and close the
mesh region. A more significant reduction in the number of un-
knowns is achievable by resorting to solution schemes that in-
volve high-order functions only in the regions where these are
W?eeded;é adaption or, for example, as in [21]). These improve-
ments are not discussed here since they are outside the point of
this paper.

70
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Fig. 7. Attenuation constant for the microstrip line described in the text. T|
solid line results are taken from [20].

IV. RESULTS FORLOSSYWAVEGUIDES

High-order elements can be effectively used to model the
complex behavior of electromagnetic fields in lossy metal

h = 100 pm and permittivitye, = 13. The line parameters
are: linewidthiW = 75 um, strip and ground plane thicknes
t = 3 pm, strip conductivitye = 4.1 - 107 S/m, ground-plane
conductivitys = 5.8 - 107 S/m. This structure has been studie
by enclosing it in a square perfectly conducting box of si
20 W. To numerically deal with such a structure, high-order
quadrilateral elements are more convenient than triangular ele-
ments because of the presence of very thin rectangular regions
(the strip and ground plane). Despite the fact that good models
could be obtained by use of specialized preprocessor codeé,l]
to prove the effectiveness of high-order elements on a general
triangular mesh, the geometry has been readily discretized with2]
a triangular mesh by use of a commercially available code
(PDETOOL-MATLAB). 13]
The mesh we used consists of 420 triangles and 733 corner
nodes, corresponding t914 000 unknowns fop = 0 and to 4]
roughly 960000 unknowns fgy = 3. In spite of these high
figures relevant to the number of degrees of freedom, this mesr[15]
yields a questionable model for the electromagnetic field in the
lossy ground plane and within the strip. In particular, the strip is
coarsely modeled by only one layer of eight triangle doublets, [6]
which is to say, by 16 right-angled triangles in all. Each triangle
within the strip is of poor quality since its orthogonal sides have [7]
very unequal length (3 and9 m). Therefore, appropriate ex-
pansion functions able to accurately represent the field decay
in the metal region are necessary to a reliable evaluation of thes]
losses. It is rather evident that this is impossible just by using[gl
zeroth-order functions and only one layer of triangle doublets
within the strip. In fact, the strip thicknegsequals two skin
depths { = 26) at f ~ 2.75 GHz, whereas at 40 GHz, the strip (10]
skin depth is roughly.13¢ (6 is 0.39.m). To get good results
with p = 0, one needs to define at least three layers of triangle

V. CONCLUSIONS

A higher order vector FEM code to study shielded waveg-
>P{}des with lossy anisotropic regions and with metallic regions of

have shown that higher order vector elements are essential to
correctly model the normal discontinuity of the field at the inter-
Face between two different media, and to accurately model the
onductor losses in roughly meshed metal regions of dimension
f the same order of the skin depths of some frequency compo-
ents.
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